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The virtual colonoscopy technique is a non-invasive technique used to generate
high resolution video views of the colon interior structure. The colonic structure consists
of a great number of triangle meshes that challenge rendering performance. In contrast to
previous work, the proposed approaches allow interactive colonic surface rendering on
low-cost PC systems. Our system takes advantage of the following concepts: PVS, LOD
and image caching. Initially, the colon structure is partitioned into many cells based on
curvature of the centerline. During rendering, only triangles contained in PVS are con-
sidered for rendering. To further improve rendering performance, each cell is repre-
sented by multi-resolutions of triangular mesh or cached images. We present an adaptive
approach used to automatically switch LOD/image caching and yield interactive render-
ing performance with acceptable realism on low-cost PC platforms.

Keywords: virtual colonoscopy, interactive rendering, potentially visible set, level-of-
detail (LOD), image caching

1. INTRODUCTION

Virtual environments are computer simulations of environments that either exist in
the real world or are brought to existence through computer simulation. In medical ap-
plications, the virtual colonoscopy environment [1-3] gives physicians a way to enter,
observe and interact with the colon structure in an artificial environment. In virtual
colonoscopy, hundreds to millions of triangles are required to represent with good fidel-
ity the colonic structure for detecting possible polyps. In such virtual environments, in-
teractive rendering performance is very crucial. Achieving a sufficiently interactive
frame rate is the major goal for creating a visually convincing presentation of the virtual
colonoscopy environment for physicians. In this study, we experimentally evaluated dif-
ferent rendering techniques. We report our practice and experience in achieving interac-
tive rendering rates in a complex colonic environment on low cost PC-platforms.

In the virtual colonscopy system, the triangular surface of the colon structure is first
segmented based on the volume data and can be surface-extracted using a marching cube
algorithm. In our experiments, one set of colonic volume data 512×512×318 in size was
used. After surface extraction, there were approximate 500K triangles used to represent
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the entire colon structure. When rendering this number of triangles on a low-end PCs, it
is hard to achieve interactive performance. However, since the colonic environment is a
tube-like structure, at any instant, only a subset of the colon is visible to the observer.
Therefore, there is great potential for exploiting this observation and the characteristics
of the colonic structure to cull the number of triangles. In the past, several approaches
have been proposed to speed up rendering of the colon structure [2, 4, 5]. In [2], Arie’s
approach [2] computes PVS (Potentially Visible Set) on the fly during rendering and uses
a hardware-assisted visibility algorithm called the aggregate cull rectangle (ACR) algo-
rithm. ACR efficiently culls unseen cells in near-to-far order. Lorensen [4] et al. ex-
ploited a triangle decimation method to globally eliminate the flat portion of the colonic
surface prior to rendering. In this manner, the number of triangles is significantly reduced,
however, this may lead to a loss of detail contained in the original surface. On the other
hand, Yagel et al. [5] exploited a parallel technique to expedite the process of volume
rendering. So far, as mentioned above, most work has been done on expensive high-end
workstations or parallel architectures. In contrast, we report a practical solution based on
virtual colonoscopy technology for use on low-end PC platforms.

The remainder of this paper is organized as follows. Section 2 overviews relevant
work on rendering large geometric databases. Section 3 reports our practical solutions for
accomplishing interactive rendering on PC-platforms. Experimental results and discus-
sion are presented in Section 4. Finally, concluding remarks are given in Section 5.

2. INTERACTIVE RENDERING TECHNIQUES

To render complex virtual environments like the colonic structure at sufficient
frame-rates, interactive rendering techniques can be exploited. This section gives an
overview of the previous work in real-time computer graphics relevant to our work. PVS
(Potentially Visible Set) was first proposed in [6] for application to the densely occluded
environment. The key is to compute an appropriate partition of the environment. During
rendering, only triangles in PVS are taken into consideration. This approach obtains a
conservative estimate of the actual visible parts for a given region. Another approach to
improving rendering performance is to replace a complicated mesh with a set of
level-of-detail (LOD) approximations. Hoppe et al. utilized an energy function to obtain
a mesh reduction framework [7]. Similarly, Hoppe’s recent work [8] presented a new
framework for selectively refining an arbitrary progressive mesh according to the view-
ing position. Schaufler [9] et al. and Shade [10] et al. independently developed similar
techniques termed dynamic impostors and image caching, respectively. Object images
are dynamically generated and re-used in the following frames as long as possible. The
object images are mapped onto transparent polygons that are positioned and oriented
properly with respect to the point of view in order to closely mimic the appearance of the
objects [9]. In [11], we presented PVS with LOD technique to improve rendering speed.
In this paper, our practical solutions exploit the concept of PVS in conjunction with LOD
and the use of image caching techniques to improve rendering performance. We use a
heuristics based on distance and viewing disparity to determine the transitions of LODs
or image caching.
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3. INTERACTIVE RENDERING OF COLONIC STRUCTURE

3.1 PVS Determination

In our previous work [3, 11], we described a virtual colonscopy system. In that work,
we concentrated on the preprocessing tasks in the proposed system, including segmenta-
tion, 3-D thinning and tracking, used to find the flythrough path. The whole colon is di-
vided into several cells based on curvature of the centerline. In this paper, we concentrate
on the issue of interactive rendering of the colonic structure. For more details about other
preprocessing steps, please refer to [3, 11]. Here, we assume that partitioning of the co-
lon has been accomplished, and that now, we can perform visible set pre-computation.
Fig. 1 illustrates our method used to compute PVS. For each region, there are two cross
sections (front and rear doors) shared with two neighboring regions (except for the first
and last regions). Take region F as an example. Cells E and G are immediate neighbors
of F, so E and G will be included in F’s PVS. For other non-immediate neighbors like H,
we must determine if any point of H can be reached by a sight-line that originates inside
cell F. This visibility can be determined as follows. We cast rays from those points on
the front door of F to the points on the rear door of H. Considering two rays, say rayi and
rayj, rayi can reach cell H, but rayj is blocked (since it hits the boundary before hitting
H’s rear door). Therefore, cell H is visible to F and will be included in F’s PVS. How-
ever, if no visible ray (such as rayi) is found, then cell H will not be included. If H is not
visible to F, we will terminate the search of F’s PVS because cell H (invisible cell) will
block the remaining cells. Otherwise, the search of PVS will continue until the end of the
colon is reached or an invisible cell is found. The visibility computation for PVS is ob-
tained by using sight-lines between two doors. Each door consists of a finite number of
voxels on each door plane. We shoot each sight-line from one voxel in one door to the
other voxel on the corresponding door. This is accomplished using the standard 3-D line
drawing algorithm, called 3DDA. It takes about 10 seconds to compute the PVS between
two cells. Due to the finite sampling involved in the sight-line process, there might be a
problem with accuracy of PVS. However, this most often occurs at the ending portion of
PVS. In our experience, it does not cause too much bad visual effect to influence surgical
examination. One solution for decreasing the possibility of error is to increase the num-
ber of sight-lines per voxel. In our implementation, a double-linked list is maintained for
fetching a cell’s PVS. As the camera moves along the colon cell by cell, we also travel
this list node by node and access the cells for the current PVS (as shown in Fig. 2). As an
observer moves forward and backward along the colon, the pointer to the current PVS is
updated forward and backward.

3.2 Adaptive Display of the Colonic Environment

To adaptively display colonic cells, we first create multi-resolution representations
for each cell. Switching between different resolutions is primarily determined by the or-
der (near-to-far) existing in the current PVS. In this study, we adopted Hoppe’s progres-
sive mesh approach [7] to create the LODs of each cell. Fig. 3 shows some results of
mesh simplification obtained in our study. In this example, there are four versions avail-
able for one cell, and the number of triangles is approximately reduced by a factor of two
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Fig. 1. Computation of PVS for each cell.

Fig. 2. The double-linked list used to maintain PVS.

between two consecutive levels (i.e., the maximum and minimum are 11470 and 997
triangles, respectively). However, the difference in appearance between them is small.
Note that in the method [7], there is only a copy of original mesh accompanying with
split-merging relation links among different versions. Transitions between different ver-
sions are computed during rendering. In our implementation, we adopt the method in [7]
to simplify the mesh only, but we compute and store six versions for each cell in the pre-
processing stage. During rendering, we only need to determine how to switch different
versions instead of computing new versions as in [7]. Additionally, since different ver-
sions of mesh are created for two adjacent cells, there might be cracks between cells. To
solve this problem, we can prevent triangular meshes on the boundary from being sim-
plified by simply adjusting their weights (i.e., very large values) in the energy function.

During rendering, we propose an adaptive selection of LOD algorithm described as
follows.

We make the following assumptions (see Fig. 4):
• Each cell has m versions of levels-of-detail, l l l

� � �
� ����

�− , where l
�

is the origi-
nal mesh and l

�−� is the crudest version.
• The current camera is located at cell Ci, and its viewing direction and 3D position are

denoted as Vview and eye, respectively.
• There are n cells in Ci ‘s PVS denoted as {p1, p2, …, pn,}, where pi is in near-to-far
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order from Ci.
• The center and normal vector of the partition plane (rear door) for pi are denoted as Oi

and Ni, respectively.

(a) (b)

(c) (d)

Fig. 3. Multi-resolution representations of a colonic cell ((a)-(d): high to low resolution).

Fig. 4. The adaptive LOD selection scheme.
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To automatically determine the transitions of LOD, we first normalize LOD selec-
tion based on several representative views within each cell in the preprocessing stage.
Then, during rendering, we use this pre-computed selection mapping to determine the
version of cell approximations. For each cell Ci, the normalized_selection() procedure
computes three seljis for three viewing points, the starting, middle and ending points,
respectively, located on the centerline of cell Ci. In this manner, we compute seljis for all
cells and use their values as the approximate distribution for all possible views inside the
colon. In the current algorithm, we only use three views to approximate the distribution
of possible views inside the colon. It might not always be correct. One possible modifi-
cation is to locate high curvature points along the centerline of the cell and to then use
these points as the representative views. Next, we need to determine how to classify this
distribution into m levels. For the purpose of classification, the k-means method [11] is
exploited to find the range of selji for each level of LOD. K-means is a well-known
method used to determine k clusters among distribution. In our approach, each cluster
represents a level of LOD. We can easily check the value of selji to find out which cluster
it belongs to. The advantage of the k-means method is that it groups most related distri-
bution in one group. In this manner, we attempt to avoid jerk transitions. Therefore, dur-
ing rendering, we compute a selcamera from the current camera location to each possibly
visible cell of Ci, and then use selcamera to determine its version of LODs according to
level classification in the preprocessing stage. Later, we will present detailed experimen-
tal results to illustrate use of our method.

procedure normalized_selection ( )
begin

For each colonic cell do
{

For j = 1 to 3 do
// three eye positions, starting, middle and ending points, respectively .
{
// For each cell, each PVS consists of n cells, and the center and normal
vector of the partition plane (rear door) are denoted as O1,…On and
N1,…Nn, respectively.

���� ��� ��= −
�

; /*** currently, the viewer is located in cell k)
θ = •−

��� � �
�

�
� �

����
;

For i= 1to n do /*** if there are n cells in PVS for the current cell k

// for all PVS cells from the current cell
{

selji = � ���� �
� �

× + × θ ; // w1 and w2 are user-specified weights
���� ���� � �

� �
= + − +�

; // distance heuristics
θ θ= + •−

+��� � �
�

�
� �

� �
; // viewing direction heuristics

}
}

}
Use the k-means method to classify all selji s into m groups;

end
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In the above algorithm, the parameters dist and θ are two key factors in determining
the selection of levels-of-detail for each cell in the current PVS. In the preprocessing
stage, we compute weights at three places (starting, middle and ending points) as a rough
estimation used to determine transitions of LODs. When the above algorithm is used, the
farther cell selects a coarser one. The parameter θ indicates the potential of being blocked
by the nearer cell. Therefore, a larger θ will tend to select a coarser one, too. As shown in
Fig. 4, for p3, case (a) will tend to select a finer one than case (b).

Fig. 5. The angular discrepancy, θ [10]. The cached image was computed based on v0. Let point a
be a point inside the cell and its correspondence on the cached image is a’.

Image caching is the concept of reusing a previously rendered image for the current
or the following frames. In this study, dynamically generated cached images are inte-
grated into our adaptive LOD selection scheme. Since the entire colon is divided into
cells (i.e., continuous and order is predetermined) and the observer walks inside it, there
is no need for a special data structure like the BSP tree [10] to determine the composition
order (far-to-near). Therefore, the only task we need to perform is to classify each cell (in
PVS) as being a candidate for an image caching or not, and whether a new caching must
be generated or an existing one can be re-used. Similar to [10], we set up a parameter θ
(see Figure 5), an error metric that measures the maximum angular discrepancy between
a point inside a cell and the point that represents it in the cached image, to determine the
life span of an image caching.

As mentioned above (Fig. 4), in the colonic environment, the parameters dist and θ
are two key factors in determining the selection of levels-of-detail for each cell in the
current PVS. Similarly, we adaptively determine θ for the life span of an image caching
per cell using these two parameters. Principally, larger dist and θ will tolerate a larger θ
error (kindly similar to the concept of LOD). Additionally, the projected area, A, of a
cached image is also an interesting factor. Fig. 6 shows that a smaller A implies that it is
located at the far end of the PVS. In this situation, the accuracy of its representation
might be less significant. Therefore, we take it into account in determining θ for each cell
of PVS. The method for selecting θ is exactly the same as the procedure normal-
ized_selection () except that we use selji = � ���� � � �

� � �
× + × + ×θ . By combining

LODs and image caching, we hope to achieve the following: The nearer cells will be
rendered using finer representations. On the other hand, the farther cells will be rendered
using coarser representations, and we hope to use their cached images for several frames,
thus saving rendering time. Basically, the hybrid methods mentioned above have the fol-
lowing arrangement:

v0v1

a’

θ
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• Case 1: The cell that is currently being visited by the viewer must be represented by the
finest mesh version.

• Case 2: The cells located in the end portion of the PVS are represented by either the
LOD or cached images. In particular, when a new cell becomes visible, it is first rep-
resented by the LOD. However, in the following frames, we use the cached image in-
stead of the LOD as possibly as we could. Since these cells are located in the end por-
tion, it is less significant and is always partially blocked by the other cells; therefore,
this arrangement does very well. If the cached image is used, we represent each cell
with a cached image and paint the cached images in a back-to-front manner. Note that
if the current cached image for the cell can not satisfy angular discrepancy, we use the
LOD instead.

• Case 3: The cells near the first cell (i.e., the one currently being visited by the viewer)
are always represented by the LOD.

• The determination of cases 2 and 3 is based on selji.

(b) (c)
(a)

(b) (c)

(a) (f) (g)

(d) (e)

(f) (g)
Fig. 6. The left image (a) is the final rendering result, and the other images ((b)~(g)) are the partial

images for each cell from near-to-far in the PVS.

Image-caching for each colonic cell is implemented as follows. First, we project the
eight corners of the bounding box of each cell. Then, we find the screen space bounding
rectangle of eight points (i.e., corners). Next, we project the center point of the bounding
box and replace the projected z of the four corner points found with the projected z of the
center point. Finally, we inversely project these four points into 3D space. If we use the
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standard OpenGL graphics library, we can easily achieve this through Unproject() API.
After the above steps are completed, we define a 3D quadrilateral (i.e., a billlboard) that
passes through the center of the bounding box, onto which we can texture map an image
of triangles contained in this cell.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We divide the entire colon structure into 50 cells. Plot 1 shows the number of trian-
gles contained in each cell, and Plot 2 shows the number of triangles in the PVS of each
cell. On average, there are 47944 (48 K) triangles in the PVS per cell. In case that we do
not exploit PVS strategy, there are about 470K triangles required to pass the rendering
pipeline. Therefore, the PVS can significantly reduce the number of triangles.

Next, we will show that the PVS strategy can be further improved in conjunction
with the proposed adaptive-selection-of-LOD scheme. In this experiment, we used 6 lev-
els-of-detail for each cell of the colon structures, and the weights for w1 and w2 were 1
and 2, respectively. Plot 3 shows the distribution of selji for the whole colon
pre-computed under this configuration, and Plot 4 shows six groups after k-means classi-
fication. Note that all the computed selji were scaled to a range of integers (0,110). In our
plots, the X-axis represents the scaled selji, and the Y-axis the number of views with the
same scaled selji integer. Each classification represents a range of sel for a specific level
of LOD. Plot 5 shows the average number of rendered triangles per frame during auto-
matic navigation (a total of 6001 frames). On average, it rendered about 24K triangles.
This number is a small portion of the colonic surface (470K triangles). On a PC-based
platform, it is easy to achieve an interactive rendering rate of 24 K triangles. The plot
shows that a larger or longer PVS may require that more triangles be rendered than a
smaller or shorter one. We have achieved adequate rendering speed for an image resolu-
tion of 512 × 512 on a dual-CPU Pentium-2 PC server system. We should point out that
[4] also used triangle reduction to improve rendering. However, they did not adaptively
select appropriate version of colon cells based on distance and view direction.

Plot 1. The number of triangles contained in each cell.
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Plot 2. The number of triangles which are visible to each cell (F: forward viewing, R: backward
viewing).

Plot 3. The estimated distribution of sel for the various possible views inside the colon. Note that
the X-axis represents the scaled selji integer range (0,110), and the Y-axis the number of
views with the same scaled selji integer.

Plot 4 shows the classification of sel using k-means method

Plot 4. The classification of sel using the k-means method.
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Plot 5. The number of triangles rendered using adaptive selection of LOD. On average, 24K trian-
gles per frame were required during 6001 frames.

Plot 6 shows the results for adaptive LOD in conjunction with the image caching
scheme. To prevent perceptible visual artifacts, our implementation used a small error
threshold: θ selected by about 2 pixels on the image plane. This combination achieved
about 20K triangles per frame. It did not offer significantly improvement over adaptive
LOD. There are some reasons for this. Each PVS might contain several potentially visi-
ble cells, ranging from 4 to 7 in our case. For outdoors scenes [10], it can achieve greater
improvement. However, we must examine further some frame intervals shown in Plots 5
and 6. Plots 8 and 9 shows their comparison between 1001 and 2001 frames. Adaptive
LOD with image caching performed better. Plot 7 shows the number of cached images
that could be re-used for each cell. Some cells, such as cells 1 and 2, did not re-use ren-
dered images, since it is at beginning of walkthrough. In plot 6, we see frame rates going
up and down. When the number of re-used images increased, the frame rate increased.
However, when more cells invisible in the previous view became visible in the current
view, the frame rate dropped. Therefore, rendering could not stay constant and could
produce some annoying jerks. In the near future, we will study ways to maintain a con-
stant frame rate. Figs. 7 (a) and (b) show two extra views of the colonic structure ob-
tained in the course of navigation. Finally, we list below some points of comparison be-
tween our method and a recent work [2].

Plot 6. The rendering rate was about 20K triangles per frame using LOD with image caching dur-
ing 6001 frames
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• Our method is intended for PC platforms, while that in [2] was run on a high-end
graphics workstation. No special graphics hardware is required for the proposed
method; the method in [2] requires the use of special hardware to cull invisible cells.

• Visibility determination in our scheme is computed a priori; the method in [2] deter-
mines it during rendering.

• To speed up rendering, multiple levels of mesh representations are adaptively used or
cached-images are used. Furthermore, when PVS is employed, the proposed rendering
rate is superior to that achieved using the method in [2], which only exploits the origi-
nal mesh.

For more detailed comparison between our system and that in [2], please refer to our
previous paper [12].
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Plot 7. The number of images reused for each cell during 6001 frames
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Plot 8. The average number of triangles required using LOD between frames 1001 and 2001.
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Plot 9. The average number of triangles required using LOD with image caching between frames
1001 and 2001.
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7 (a)

7(b)

Fig. 7. (a) and (b) show two interior views of the colonic structure.
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5. CONCLUSIONS AND FUTURE WORK

In this work, we have reported our practice and experience in rendering of the colo-
nic environment. In this study, several interactive rendering techniques were experimen-
tally evaluated. These techniques consist of PVS computation, LOD and image caching.
We have proposed an adaptive approach to automatically switching between LODs and
image caching. Compared to previous works, the proposed scheme offers comparable
performance on low-end PC systems. There are several possible directions for future
work. Uniform frame rates are needed to achieve better simulation. Assuming that LODs
and image caching are used, we hope to achieve optimal rendering quality but with a
uniform frame rate. Additionally, the view-dependent LOD approach is also very prom-
ising for producing smooth LOD switching. We plan to investigate it for our system in
the near future. Our current approach only displays the internal surface of the colon. We
are planning to visualize the surface beneath the tissue via computationally intensive
volume rendering. Therefore, other kinds of expediting techniques, such as parallel
processing might be investigated. Finally, the aim of our proposed technique is to de-
velop 3-D virtual colonoscopy and the make its practical on commonly used PC plat-
forms. There is still much work to be done, such as to develop a realistic camera model
and to achieve realistic appearance of colon morphological movement and real colono-
scopy simulation.
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